Autonomous linear lossless systems
نویسندگان
چکیده
منابع مشابه
Autonomous linear lossless systems
We define a lossless autonomous system as one having a quadratic differential form associated with it called an energy function, which is positive and which is conserved. We define an oscillatory system as one which has all its trajectories bounded on the entire time axis. In this paper, we show that an autonomous system is lossless if and only if it is oscillatory. Next we discuss a few proper...
متن کاملSplitting methods for non-autonomous linear systems
We present splitting methods for numerically solving a certain class of explicitly time-dependent linear differential equations. Starting from an efficient method for the autonomous case and making use of the formal solution obtained with the Magnus expansion, we show how to get the order conditions for the non-autonomous case. We also build a family of sixth-order integrators whose performance...
متن کاملSingular constrained linear systems
In the linear system Ax = b the points x are sometimes constrained to lie in a given subspace S of column space of A. Drazin inverse for any singular or nonsingular matrix, exist and is unique. In this paper, the singular consistent or inconsistent constrained linear systems are introduced and the effect of Drazin inverse in solving such systems is investigated. Constrained linear system arise ...
متن کاملFUZZY INCLUSION LINEAR SYSTEMS
In this manuscript, we introduce a new class of fuzzy problems, namely ``fuzzy inclusion linear systems" and propose a fuzzy solution set for it. Then, we present a theoretical discussion about the relationship between the fuzzy solution set of a fuzzy inclusion linear system and the algebraic solution of a fuzzy linear system. New necessary and sufficient conditions are derived for obtain...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IFAC Proceedings Volumes
سال: 2008
ISSN: 1474-6670
DOI: 10.3182/20080706-5-kr-1001.00994